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Captain Einstein is a virtual reality (VR) movie that takes you on a boat trip in a world with a
slow speed of light. This allows for a direct experience of the theory of special relativity, much in
the same spirit as in the Mr. Tompkins adventure by George Gamow (1939). In this paper we go
through the different relativistic effects (e.g. length contraction, time dilation, Doppler shift, light
aberration) that show up during the boat trip and we explain how these effects were implemented
in the 360◦ video production process. We also provide exercise questions that can be used - in
combination with the VR movie - to gain insight and sharpen the intuition on the basic concepts of
special relativity.

INTRODUCTION

In the VR movie Captain Einstein [1] you experience
a boat trip in the beautiful city centre of Ghent in a
world with a slow speed of light c = 20km/h. Starting
at a small initial velocity v, different accelerations bring
you finally up to lightspeed. During the various stages
(v/c ≈ 40, 70, 85, 95%, ...) you can see how the different
effects of special relativity emerge gradually. An obvious
advantage with respect to the real world is that these
effects now become more tangible as they are brought to
a human scale. This was the original idea of Gamow that
led to the intriguing short story Mr. Tompkins (see figure
1), which is set in such a dreamworld with a slow speed
of light [2]. Later approaches in the same spirit include
the nice animations of a relativistic bicycle trip through
the city of Tübingen [3, 4]; Real Time relativity [5–7],
an interesting first-person game that allows you to travel
near the speed of light in different sci-fi settings; and
A Slower Speed of Light [8–10], an engaging first-person
relativity game which takes place in a fantasy world. See
also [11] for a thorough study on the visualization of both
special and general relativity.

The new aspect of our project lies in the 360◦ tech-
nology. First of all it allowed us to record and use real
images for creating our movie, as opposed to a 3D virtual
model. This clearly helped for the realistic ’feel’ (but see
also section II for a discussion on the limitations of this
approach). In addition, the 360◦ VR viewing experience
puts the user ’inside the theory’, so to speak. Not only
does this lead to a powerful immersive experience, but
it also allows for a very natural way to examine the di-
rectional dependence of the relativistic effects, notably
of the Doppler shift. See also [12] for a recent spin-off of
[8–10], involving a dome projection in a planetarium. In
the broader context of general relativity we should also
mention the recent VR movies of black hole adventures
[13, 14].

Captain Einstein has so far been mainly used for sci-
ence communication purposes. It has featured at festivals
in Belgium and the Netherlands, drawing much interest
and provoking enthusiastic reactions from people of dif-
ferent ages and backgrounds. But the origin of the movie

is actually more educational: it grew out of the practice
of teaching the theory of relativity at Ghent University.
The main purpose of this paper is to provide the scien-
tific content behind the movie, which can be used directly
by students, or by lecturers in the context of an exercise
session on special relativity.1 To this end much of the
discussion is put in the form of exercise questions. In
fact, as will become clear in this paper, one can think of
the whole Captain Einstein project as one big exercise in
special relativity. At the end of the paper, we also briefly
comment on our experience with the movie so far, both
in the context of science popularisation and education.

Although it clearly would have been easier for Einstein
to discover the theory of relativity in a world with a slow
speed of light, deducing the laws of relativity from the di-
rect observations still requires some work. Even to some-
body with a prior training in relativity it is not entirely
straightforward to relate our VR experience directly to
the archetypical relativistic effects. The reason lies in the
important difference between what is and what is seen:
since the speed of light is finite we do not see fixed-time
snapshots, the further the object the more we see it in
the past. In more technical terms: at each instant we
see our past light cone rather than a particular spacelike
hypersurface. This might seem to complicate the use of
the movie for illustrating the basic effects of relativity,
but as we hope to convey in this paper, thinking about
the true observational consequences of e.g. length con-
traction and time dilation can actually help to sharpen
the understanding of these effects. We refer the reader
to [15–17] for the original groundbreaking work on the
visual consequences of relativity.

The science covered by our VR movie is basically
the content of Einstein’s 1905 paper[18] (apart from the
Lorentz transformations of Maxwell’s equations). In sec-
tion I we study the role of length contraction, time di-
lation and relativistic velocity addition in our movie. In
section II we examine the actual observations in a world
with a slow speed of light. This involves taking into ac-
count the relativistic light aberration. As we will show,

1 We refer to our website [1] for a less technical discussion.
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FIG. 1: Mr. Tompkins (Gamow, 1939) racing through
the streets in a length contracted world.

the light aberration formula also goes to the heart of
our 360◦ simulation. Finally, in section III we consider
the relativistic Doppler shift. To our knowledge, this
is the first time that the Doppler shift on realistic full
light spectra of the sky has been simulated in this detail.
This simulation produced the spectacular colour effects
in the movie with for instance the rainbowlike features
that can be traced back to the different greenhouse ab-
sorption bands in the IR.

The exercises in the different sections are aimed at the
level of someone with a rudimentary knowledge of spe-
cial relativity, e.g. someone who has attended the first
few lectures of a (special) relativity class or has read the
first few chapters of some special relativity course (see
for instance [19] for some excellent online notes). The
stars (one or two) indicate the difficulty level, exercise
solutions are provided at the very end of the paper.

To set the conventions: we will consistently use primes
(e.g. t′, x′, θ′, λ′, . . .) for coordinates, directions, wave-
lengths,... in the boat reference frame S′. This is your
reference frame when you experience the VR boat trip.
Non-primed coordinates, directions,... are reserved for
the quay rest frame S.

I. MR. TOMPKINS

In 1939 the brilliant physicist George Gamow writes
the delightful science popularisation book Mr. Tompkins
in wonderland [2], in which Mr. Tompkins wakes up in a
dreamworld with a low speed of light (c = 10mph), much
like the one we have in Captain Einstein. In this world
Mr. Tompkins is confronted with the effects of length
contraction and time dilation. In figure 1 for instance,
you see Mr. Tompkins racing through the streets, with
the buildings (and people on the sidewalk) experiencing
a length contraction.

The time dilation and length contraction obviously also

FIG. 2: Above: point of view shot from the boat
orthogonal to the velocity direction for a boat trip along
a length contracted Graslei at speed v = 0.85c. Below:
image in the quay rest frame (v = 0) for comparison.

play an important role during Captain Einstein’s boat
trip. In figure 2 you see the analogous picture for a boat
trip along the canals of a length contracted Ghent at a
velocity v = 0.85c. From the boat’s perspective it is of
course the quay that is moving, which results in a length
contraction l′ = l/γ(v) along the direction of movement
for all the objects at rest in the quay frame. Here we
define the Lorentzfactor γ(v) ≡ 1/

√
1− v2/c2 and for

v = 0.85c we have γ(v) ≈ 2, corresponding to the sit-
uation in the figure. From the Captain Einstein movie
you already know that this is not the actual view, but
to be sure, the picture does represent the true geome-
try of the moving quay from the perspective of the boat
observer O′ at some fixed time t′. We reserve the discus-
sion of the visual manifestation of length contraction for
the next section, while the visual consequences of time
dilation are discussed in section III. In this section you
are asked to compute the effect of length contraction and
time dilation on the boat travel time, which in turn has
its consequences for our simulation of speed.

Exercise 1 (?): Length contraction, time dilation
and frame rates.

(a) Let us take two subsequent bridges over the canal
that are separated by a distance l in the quay rest frame.
Given the length contraction, if the boat is going at con-
stant speed v, what is the time ∆t′ it takes the boat to
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FIG. 3: ”Check out the towers, how they are curved!”
Point of view shot from starboard side (righthand side)
in the Captain Einstein movie.

drive from one bridge to the next?

(b) From the perspective of the quay observer there is
of course no length contraction for the distance between
the two bridges. Still he should be able to compute the
boat travel time ∆t′ and arrive at the same conclusion.
Show that, by taking into account the time dilation, the
quay observer indeed arrives at the same result for ∆t′.
This should clarify Maja’s remark: ”we get some speed
for free, time is slowing down as we speed up.”

(c) The original footage was shot on a boat going at
constant velocity vb(≈ 8km/h). To simulate other ve-
locities we simply applied a speed-up to the movie.2 In
a non-relativistic world we would have to speed up the
movie by a factor v/vb to simulate a certain velocity v.
What is the speed-up that we had to apply for our rela-
tivistic movie?c

Exercise 2 (??): ”This g-force is crushing us,”
relativistic velocity addition and acceleration

The different accelerations during the boat trip bring
you from one instantaneous inertial frame to the next:
S′ = S(~v), where S(~v) is the inertial frame that moves
with a velocity ~v with respect to the quay frame S =
S(~0). The movie shows you the visual effects of these
accelerations, (un)fortunately we can not let you experi-
ence the corresponding g-forces. But what is the g-force
g, corresponding to an acceleration a = dv

dt′ ? (Here t′ is
the time-coordinate for the boat observer O′! So a is the
acceleration that we measure on the boat by timing the
change of speed on our speedometer.) For simplicity you
can assume a constant direction: ~v(t′) = (v(t′), 0, 0).

At the end of the Captain Einstein movie the boat is
accelerating out of control towards lightspeed. We hear
Maja shouting: ”we have reached 19.8. . . 19.9 km/h, this
g-force is crushing us.” Assuming a constant acceleration
a of about 0.1km/h in one second, a ≈ 0.003G and a
maximal physiologically sustainable g-force of 10G, at
what velocity would you pass out?c

2 See for instance this clip for the same speed-up trick in the leg-
endary 80s TV series Knight Rider.

II. OBSERVING ON THE LIGHT CONE

The actual shapes of the buildings in the Captain Ein-
stein movie (see e.g. figure 3) are quite different from
what you see in figure 2. Length contraction refers to
the length (along the velocity direction) of moving ob-
jects taken at a fixed time t′ in the considered reference
frame. However, since the speed of light is finite, we do
not see fixed-time snapshots. At each instant we see our
past light cone, rather than a particular spacelike hyper-
surface. This vision delay effect was neglected in the Mr.
Tompkins book.

Exercise 3 (?): ”Check out the towers!”

For the tower in figure 3, it is clear that the light travel-
ling from the top of the tower towards our eye, has taken
a longer time than the light that emerged from the base
of the tower. Use this to explain qualitatively the distor-
tion in the picture, in particular the direction in which
the tower bends.c

Exercise 4 (?): How to see the length contraction

At some point during the trip Maja asks you casually
to ”see how the ancient houses are squeezed to half their
width.” She is of course referring to the length contrac-
tion, at 17km/h we have γ(v) ≈ 2, which indeed gives a
contraction by a factor of two. But she was a bit cheeky
there: to really see the length contraction you have to
look in a very specific direction.

Explain that by looking orthogonally to ~v one can in-
deed directly observe the length contraction, without dis-
tortions from the vision delay effect. So if we take for
instance a picture in the orthogonal direction, precisely
at the moment when the moving object (for instance
the white fence in figure 4) appears in the centre of the
viewfinder, we can use standard Euclidean geometry to
compute its length l′ from the opening angle α and the
distance between the boat and the object (see also the
left panel of figure 7).

Now also argue qualitatively from the vision delay ef-
fect why the house on the left in the picture does not
appear to be contracted and why the white van on the
right appears to be more contracted.c

Due to this vision delay effect, it seems that to make
a relativistic movie one needs the full 4D information, in
particular it seems one needs the 3D position for all the
relevant objects at the appropriate times. We did not
have this. What we did have is the series of different
images recorded by a 360◦ camera on the boat, during
the shoot along the canals of Ghent. In other words: at
each instant we know the light that enters the camera
from every direction. As can be seen in figure 5 (a), the
resulting image is typically stored in an equirectangular
projection of the unit sphere.

Since our boat was going at vb ≈ 8km/h in the real
world with c ≈ 3 × 108m/s, and thus vb/c ≈ 0, we can
effectively consider each recorded movie frame to be the

https://youtu.be/v8dWW9KxqlQ?t=47s
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FIG. 4: Above: length contracted white fence as seen at
starboard by Captain Einstein (the fence lies parallel to
the velocity direction). The dotted line is the θ′ = π/2
direction orthogonal to the velocity (~v.~n′ = v cos θ′ with
~n′ the unit vector in a particular viewing direction).
Below: view in the quay rest frame for comparison.

image in the quay rest frame S of our virtual world with
a slow speed of light. Notice, that for this to hold all
the objects in the image have to be at rest in the quay
frame. This is the reason why we had to stitch away our
boat in the original images. This is also the reason why
we shot the movie on a cold winter day, we did not want
any other moving boats in the image. Unfortunately the
cold did not stop the traffic at the quay. So the people
on foot, the bikes and the tram in the movie are not
depicted correctly and can be considered as goofs that
defy the laws of relativity (see exercise 8 for the correct
visualisation of the pedestrians).

It is now important to realize that the very same pho-
tons that generate the 360◦ image in the quay frame S,
are also responsible for the image in any other frame S′.
To create this new image we essentially have to know the
directions and wavelengths of these photons, as observed
in S′. Here we consider the directions, the wavelengths
(Doppler shift) are discussed in the next section. The
transformation of the unit sphere of light directions ~n in
the quay rest frame S to the unit sphere of directions ~n′

in the observer boat frame S′ is given by the relativistic
aberration formula, we provide it here for reference (with

(a)

(b)

FIG. 5: Above (a): frame of the original footage of the
full sphere of directions ~n in equirectangular projection:
~n = (sin(π− v) cos(u), sin(π− v) sin(u), cos(π− v)) , with
u ∈]π,−π] the horizontal coordinate and v ∈ [0, π] the
vertical coordinate in the picture. The boat is going in
the x-direction: ~v = (v, 0, 0). Below (b): corresponding
frame after applying the light aberration formula (1) for
v = 0.7c. Side question: can you understand what
happened with the plane trail in the picture?

~v.~n = v cos θ, ~v.~n′ = v cos θ′):

cos θ′ =
cos θ + v

c

1 + v
c cos θ

. (1)

In figure 6 we show a visualisation of the formula on
the unit sphere, the resulting transformation on the 360◦

footage is shown in figure 5 (b).

This transformation can be implemented fairly
straightforward with a shader, an image transformation
program common in computer graphics software (e.g.
WebGL, Unity), written in a specific GPU compatible
language. We have experimented with that, but in the
end, for our final movie we wrote a Matlab code that gen-
erates the relativistically transformed 360◦ images, frame
by frame. The main reason lies in our implementation of
the Doppler shift (see the next section), this required nu-
merical interpolation on a large set of pre-generated RGB
to RGB transformations, which we found more conve-
nient to implement with Matlab.

Exercise 5 (??): from 2D to 3D, from light aber-
ration to length contraction

So to create our movie we used a local transformation
(1) for the 2D unit-sphere of light directions hitting the
observer at a certain time. One can verify in general that
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FIG. 6: Visualization of the light aberration formula
(1). Left: the unit-sphere of directions ~n in the quay
rest frame. The different black circles are parallels with
respect to the (blue) x-axis that each correspond to a
particular angle θ: ~n.~ex = cos θ. Right: the
corresponding unit-sphere of directions ~n′

(~n′.~ex = cos θ), after a boost in the x-direction with
v/c = 0.7. As can be seen from the transformed
parallels, the field of view ’collapses’ into the
velocity-direction.

the light aberration formula indeed reflects two effects in
the 4D world: the vision delay effect and the length con-
traction. In this exercise we focus on the particular situ-
ation of the previous exercise 4 and demonstrate that for
an orthogonal viewing direction θ′ = π/2, the aberration
formula is indeed geometrically equivalent to the length
contraction. As shown in exercise 4, for this particular
viewing angle, we can use Euclidean geometry to relate
the opening angle α of the two endpoints to a length l′

of the moving fence: l′ = 2y tan(α/2), where we take the
object lying parallel to ~v and y is the distance from the
observer to the centre of the object, see figure 7. Now use
the aberration formula to show that the length l in the
object’s rest frame (i.e. the quay rest frame S) is indeed
longer by a factor γ(v).c

FIG. 7: Left: fence as seen by the boat observer, with
the endpoints at angles θ′1 = π/2− α/2, θ′2 = π/2 + α/2
with respect to the velocity vector. Right: the same
fence as it would be seen in the quay rest frame (also
the fence rest frame) for an observer at the same
position as the boat observer.

III. DOPPLER EXTRAVAGANZA

Let us now discuss colour. The relativistic Doppler for-
mula reads (with again θ′ the direction in S′ with respect

(a)

(b)

FIG. 8: (a) Doppler shifted monochromatic blue,
λ = 475nm, at 40% and 85% of lightspeed. (b) Doppler
shift for the diffuse blue sky spectrum that was used as
input for the Captain Einstein movie (see figure 10 for a
point of view shot).

to the velocity direction):

λ′ = λ
1− v

c cos θ′√
1− v2

c2

≡ λ

D
. (2)

We first illustrate the Doppler formula by looking at its
effect on monochromatic light. In figure 8(a) you see the
effect on blue light of λ = 475nm, for v/c = 40% (85%).
At these relativistic speeds, the Doppler shifted wave-
lengths span the full visible spectrum ≈ [390nm, 700nm]
[20], and even go beyond the visible spectrum, into the
UV: λ′ < 390nm for directions θ′ < 52◦ ( θ′ < 48◦)
and into the IR: λ′ > 700nm for directions θ′ > 151◦ (
θ > 75◦); resulting in black patches of invisible light both
behind and in front of the boat.

The considered values of v/c for the Doppler shift on
blue light in figure 8(a) correspond to the velocity at the
beginning of our movie (8km/h = 0.4c) and to the ve-
locity after the second acceleration (17km/h = 0.85c).
Yet the colours at the sky in our movie do not look at
all like in the figure above! The reason lies in the dif-
ference between the pure blue light and the incredible
rich blue sky that consists of a full spectrum of different
wavelengths, starting in the UV and ending deep in the
IR part of the light spectrum (see figure 9). The Doppler
effect on such a realistic blue sky spectrum produces the
colour pallet of figure 8(b), see also figure 10 for a point
of view shot in our movie. At the end of this section we
will expand a bit more on our simulations of the Doppler
shift, but now you are first asked to explain the qualita-
tive features of the colours in the movie and think about
the manifestations of time dilation.

Exercise 6 (?): Captain Einstein and the Doppler
shift: seeing the invisible

In this exercise we focus on the v = 0.85c case (figure
8(b), right panel). At this relativistic speed the Doppler
shift allows you to see parts of the blue sky spectrum (fig-
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FIG. 9: The diffuse sky radiation (data from [21]).
Horizontal axis: wavelengths in units nm; vertical axis:
spectral power distribution I(λ) in units W/(m2 nm).
Inset: part of the IR tail with the greenhouse gas
absorption bands.

ure 9) that normally lie beyond our visible window. Can
you explain the yellow and red bands at orthogonal view-
ing directions θ′ ≈ 90◦? In the movie Maja reassures us:
”don’t worry about the dark behind you, it’s not a black
hole.” Can you explain the true reason for this darkness?
Finally, can you see why the greenhouse gas absorption
bands are responsible for the distinct blue and purple
bands in front of the boat? (Don’t worry here about the
overall brightness in front of the boat, as we explain be-
low, the searchlight effect boosts the light intensity in the
frontal directions.) c

Exercise 7 (?): How to see the time dilation:
transverse Doppler effect

The relativity of time, and in particular the time dila-
tion, is probably the most spectacular consequence of the
theory of relativity. In section I we discussed the effect of
time dilation on the experience and simulation of speed
in our movie. Now we discuss other manifestations. The
most direct verification of time dilation results from com-
paring two clocks after different trips [22]. Our captain
Maja Einstein is alluding to this type of twin paradox
experiment. In our movie she is thirtysomething, while
her brother died in 1955. But this is of course a bit of
a gimmick. However, you can also directly see the time
dilation during the boat trip. For this you simply have
to look at the sky. Indeed, the relativistic Doppler ef-
fect is in fact the combination of two phenomena: the
(de)compression of the light waves due to the radial mo-
tion of the source with respect to the observer (classical
Doppler effect, numerator of eq. (2)) + the time dilation
and therefore frequency shift due to the relative velocity
of the source (transverse Doppler effect, denominator of
eq. (2)). At angles θ′ = π/2 we see that part of the sky
for which the radial velocity is zero. The Doppler shift
in those directions is therefore purely the result of time
dilation: the ’sky clock’ that is ticking at a slower rate,
resulting in an observed light frequency that is smaller

FIG. 10: Point of view shot from Captain Einstein at
v = 0.85c, taken at an angle θ′ ≈ 30◦ with respect to
the velocity direction.

FIG. 11: Pedestrian walking with velocity ~u = −u~ex in
the quay frame, viewed at an angle θ′ in the boat frame.
The boat has velocity ~v = v~ex in the quay frame.

by a factor
√

1− v2/c2. For this exercise we simply ask
you to put on the VR headset and verify this transverse
Doppler effect during the Captain Einstein boat trip.c

Exercise 8 (?): Dopplerganger: from fast to slow
motion

During our boat trip you can see several pedestrians
that are speed walking in ’silent movie style’. As we
explained in section II, our procedure can not depict cor-
rectly the objects (like pedestrians) that are in motion
with respect to the quay. In this exercise we examine
what the observed walking pace should have been. We
consider somebody walking along the quay with a veloc-
ity ~u (see figure 11) in the quay frame.

(a) What is the velocity u′ = −dx′/dt′ of our pedes-
trian friend in the boat frame?

(b) In her eigenframe the pedestrian is walking at a
pace f0 of one step per second. What is then the walking
pace f ′ that we would observe on the boat as a function
of our viewing direction θ′? For what angles θ′ would
we observe the pedestrian in slow (fast) motion: f ′ <
f0 (f ′ > f0).c

Let us now discuss in more detail how we actually sim-
ulated the Doppler shift. The first thing to notice is that
human colour sensation involves a huge compression of
the full spectrum of wavelengths into excitation rates of
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only three types of cone cells, sensitive to three different
regions of the visible window. So radically different spec-
tral distributions can give rise to the same colour. This
of course also lies at the basis of colour reproduction,
with the three types of RGB pixels in digital imagery or
the four types of CMYK dots in printing. The RGB val-
ues corresponding to a particular spectral power distribu-
tion (SPD) I(λ) are obtained from the related tristimulus
XYZ values, which in turn are computed by integrating
the SPD weighed by the CIE matching functions (see [23]
for more details):

{X,Y, Z} =

∫
dλ {x(λ), y(λ), z(λ)} I(λ) . (3)

In figure 12 we show the precise form of the matching
functions.

To compute the colours of the blue sky on our rel-
ativistic boat trip we need the (direction dependent)
SPD I ′(λ′) in the boat frame S, which follows from the
SPD I(λ) (figure 9) in the quay/sky rest frame S (with
λ′ = λ/D, see eq. (2)):

I ′(λ′)dλ′ = D4I(λ)dλ . (4)

This is the so called searchlight effect [24]: the light from
the blueshifted directions (D > 1) gets brighter while the
light from the redshifted directions (D < 1) is dimmed.
As discussed above, the colours in front of our boat arise
from blueshifted parts of the IR spectrum. Here the full
searchlight effect counteracts and even overcompensates
the diminished power in the IR tail, resulting in very
bright light already for ’moderate velocities’ v & 0.7c.
Together with the darkening of the redshifted regions,
this produces images like in figure 13, with oversaturated
bright bands in front of the boat on a rather dull dark
background. To clearly show all the colour nuances of the
Doppler shift we chose to alter this aspect of relativity,
by dimming down the searchlight effect for our actual
movie, effectively working with a different D-dependent
pre-factor in (4).

Of course the pixels of the input images (e.g. figure
5(a)) only give us RGB values, rather than a full spec-

450 500 550 600 650 700 750

0.5

1.0

1.5

FIG. 12: CIE tristimulus matching functions, x(λ)
(red), y(λ) (green), z(λ) (blue).

FIG. 13: Point of view shot at v = 0.85c taking into
account the full searchlight effect. (Compare with the
corresponding image of the actual movie in figure 10.)

trum. To create semi-realistic Doppler shifted images, we
assumed realistic underlying SPD’s and used these as in-
put for the construction of a transformation at the RGB
level. Specifically, we used the computed Doppler shifts
of the blue sky spectrum that we discussed above. In ad-
dition we also used the Doppler shifts on light reflected
from water and from brick, which were computed by tak-
ing into account the proper reflection spectra (data ob-
tained from [25]). Our resulting RGB to RGB map then
interpolates between the three different cases (sky, brick,
water) based on the input RGB-value and the position
of the pixel in the original image.

Some comments are in order here. While our approach
should be pretty accurate for the quasi uniform blue sky
(barring the aforementioned altered searchlight effect),
the colour changes of the other ’materials’ in the images
are at best a qualitative approximation. We list a few
obvious shortcomings: clearly not all buildings or other
objects in the movie are made of red brick. Further-
more, certain regions are illuminated by direct sunlight,
whereas we assumed incident diffuse sky radiation ev-
erywhere. Also, lacking the data, we simply took a flat
water reflection spectrum for wavelengths λ > 2250nm,
which starts to have its effect for velocities v & 80%c.
Finally, we have also ignored thermal radiation from the
different objects. Taking λthermal ≈ 10000nm we can es-
timate that this would only have a visual effect at ultra-
relativistic velocities.

Exercise 9 (??): The searchlight effect

As a last exercise we ask you to verify the searchlight
effect (4). To this end, show that an incoming photon flux
F = dN

dtdΩ (with N the photon number) in a particular
direction on the unit sphere of directions in the reference
frame S, transforms as F ′ = D3F to an incoming flux
F in the transformed direction of the unit sphere in the
reference frame S′ (see figure 6) . The extra factor D
in (4) then follows from the energy Doppler shift: hν′ =
Dhν.c
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IV. EXPERIENCE

In the context of science communication and out-
reach Captain Einstein has so far been ’tested’ on more
than 2500 people at different festivals in Belgium and
the Netherlands. Our festival setup typically involves a
real canoe or kayak (on land), in which the passengers,
equipped with a VR set, experience the virtual boat trip.
The basic premise of a world with a slow speed of light
in combination with the VR experience itself attracts a
wide range of people of different backgrounds - young and
old, with or without a particular interest in science. The
response after viewing the movie is in general very posi-
tive - many interesting questions come up, often leading
to animated discussions. This helped shaping our web-
site [1] that accompanies the recent online launch of the
movie.

We have also used the movie in the context of the rel-
ativity course (third year bachelor physics and astron-
omy) at Ghent University. All students (≈ 50) viewed
the movie on a smartphone VR viewer, either at home or
in class. This then served as the basis both for a discus-
sion and exercise session in class and a home assignment.
During the session in class, for illustrating several as-
pects of the movie, several VR headsets were passed on
by the students, in addition we projected a point-of-view
image on a central screen. From the educational per-
spective, the immersive 360◦ experience of course gives
the students a new handle on relativity, notably on the
directional dependence of the effects. But in our estima-
tion the main advantage of the movie is actually simply
that it gives a fun and concrete setting for studying the
basic concepts of special relativity. We refer to [7] for a
study on the positive learning impact of the related Real
Time Relativity game.

CONCLUSIONS

In this paper we have presented the Captain Einstein
project. We discussed how the different effects of special
relativity manifest themselves in the movie. Furthermore
we have explained how the relativistic light aberration
formula (1) lies at the heart of our simulation, as it maps
the recorded 360◦ images to the corresponding images

for a camera moving at relativistic speeds. We also dis-
cussed the limitations of this procedure, namely that all
objects in the initial reference frame should be at rest.
Finally, we described our approach for the semi-realistic
simulations of the Doppler shift, assuming physically rel-
evant light spectra behind the RGB pixels in the recorded
images.

As a science communication and outreach tool we eval-
uate Captain Einstein very positively from our experi-
ences so far. Both the concept and the VR experience
itself attract a broad public; and the movie triggers many
questions both on relativity and the nature of light and
colour. Our website [1] was developed to cover some first
answers to these questions.

We have also experimented with Captain Einstein as
an educational tool, in the context of a relativity course
at the undergraduate university level. Also here our eval-
uation is positive, it allows for a direct experience of some
of the basic special relativistic effects and serves well as
the basis for an engaging exercise session. As a final
comment, based on our experience we believe VR ap-
plications can indeed present a powerful tool for educa-
tion, but only on top of the ’old school’ methods: direct
teacher student interaction, blackboards and books (dig-
ital or not).
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EXERCISE SOLUTIONS

Exercise 1

(a) The length l′ between the two bridges as measured
in the boat frame is contracted: l′ = l/γ(v). This gives
us:

∆t′ =
l

vγ(v)
. (5)

So we have that for v → c, the boat crosses the distance
between the two bridges at a time ∆t′ → 0. Even in a
world with maximal velocity c = 20km/h we can in prin-

ciple get everywhere as fast as we want, simply because
all distances are length contracted to zero!

(b) From the perspective of the quay rest frame the
distance between the bridges is of course independent of
the boat velocity v, so we have ∆t = l/v for the measured
boat travel time. But if we now take into account the
time dilation (”...time is slowing down, as we speed up”)
for the moving clock on board the boat, we recover the
result of (a): ∆t′ = ∆t/γ(v).

(c) In the real world vb/c ≈ 0, which means that we
can interpret the frames in the original footage as a series
of pictures at different positions in the quay rest frame.
The speed-up of the movie should correspond to e.g. the
number of houses (or bridges) that pass by per unit time,
not the distance travelled per unit time. In light of (a)
(or (b)) it is clear then that we should speed up the movie
by a factor: γ(v) v

vb
.

Exercise 2

Let us compute the g-force corresponding to an accel-
eration a = dv

dt′ at t′ = t′0. At that time the infinitesimal
velocity change reads: v(t′0 + dt′) = v0 + a0 dt

′, with
v0 ≡ v(t′0) and a0 ≡ dv

dt′ |t′=t0 . To obtain the correspond-
ing g-force we boost to the instantaneous inertial boat
rest frame S(v0). In this inertial rest frame we can use
Newtonian physics to equate the acceleration to the ex-
perienced g-force. The velocity addition formula, going
from S = S(0) to S̄ = S(v0), reads:

v̄ =
v − v0

1− v0v
c2

. (6)

Plugging in v(t′0 + dt′) = v0 + a0 dt
′ then gives us:

v̄(t′0 + dt′) =
a0dt

′

1− v2
0

c2

, (7)

which finally allows us to read off the g-force g, corre-
sponding to an acceleration a = dv

dt′ at velocity v:

g =
a

1− v2/c2
= γ2(u)a . (8)

For a constant acceleration a = 0.003G, assuming that
we pass out at 10G, we then find a critical velocity vcrit =
19.997km/h.

Exercise 3

The top of the tower was positioned more to the left
than the bottom of the tower when the respective pho-
tons left, leading to the distorted picture in figure 3.

Exercise 4

When the centre of the fence appears in the centre of
our viewfinder, aiming at an angle θ′ = π/2, and assum-
ing that the fence lies parallel to the velocity direction,
we know that the travelled distance of the photons from
both endpoints to our camera is the same. The picture
therefore shows both endpoints at the same time t′ in
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our reference frame S′. And we can therefore indeed use
standard Euclidean geometry in our 3D-space to relate
the length l′ of the fence, to the opening angle α and the
distance y to the boat: l′ = 2y tan(α/2).

For the house at the left, the photons coming from the
left endpoint travelled over a longer distance than those
coming from the right endpoint. The left endpoint is
therefore shown at an earlier time in the past than the
right endpoint: t′L < t′R. So at t′L the house was posi-
tioned more to the left than at t′R. This elongates the
apparent shape in the picture, counteracting the length
contraction. For the van at the left, we now have that
t′L > t′R, producing an extra apparent contraction in ad-
dition to the length contraction.

Exercise 5

First of all, notice that in the quay rest frame we do
not have to worry about the vision delay effect as the
endpoints of the fence do not move. From figure 7 we
then find:

l = y (cot θ1 − cot θ2) . (9)

We can then use the aberration formula (1) to get an
expression in terms of the angles θ′ in the boat rest frame.
First, we can easily invert (1), by substituting v → −v:

cos θ =
cos θ′ − v

c

1− v
c cos θ′

, (10)

after which we can also solve for sin θ:

sin θ =
√

1− cos2 θ =
sin θ′

√
1− v2

c2

1− v
c cos θ′

, (11)

arriving at:

cot θ =
cos θ

sin θ
= γ(v)

cos θ′ − v
c

sin θ′
. (12)

With θ′1 = π/2 − α/2 and θ′2 = π/2 + α/2, eq. (9) then
gives us:

l = 2γ(v) tan(
α

2
) = γ(v)l′ , (13)

which is precisely the length contraction formula.

Exercise 6

To understand the origin of the different colours in
figure 8(b) or figure 10 you have to look at the partic-
ular wavelength intervals that are Doppler shifted (by
eq. (2)) into the visible window for the different view-
ing directions θ′, see figure 14. In this way you can
understand that the yellow and red colours for ortho-
gonal viewing angles θ′ ≈ 90◦ originate from the UV
band [300nm, 400nm] in the blue sky spectrum, which
for increasing angles θ′ & 80◦ gets redshifted further and
further into the low frequency part of the visible win-
dow [580nm, 700nm]. This up to the point that the UV

FIG. 14: For directions θ′ = {105◦, 80◦, 56◦, 12◦, 3◦}
(and for v = 0.85c), the different intervals that are
Doppler shifted into the visible window
[390nm, 700nm], producing the different colour effects
on our relativistic boat trip.

band is shifted completely beyond the visible window,
resulting in a darkness for directions θ′ & 100◦. So the
reason for the dark behind you is simply the absence of
UV radiation in the blue sky spectrum for wavelengths
λ . 300nm.

Similarly the distinct blue and purple bands for small
angles θ′ arise from the IR part of the spectrum that is
now blueshifted (D > 1) into the visble window. Were
it not for the greenhouse absorption bands, the IR tail
would be smooth, resulting in a rather uniform colour,
independent of the precise viewing direction θ′. However,
the absorption bands introduce sharp features, producing
distinct colours depending on the particular position of
the Doppler shifted bands in the visible spectrum. (See
the end of section III for more details on the relation
between spectra and colours.)

Exercise 7

The transverse Doppler effect can be simply observed
by looking straight up during the boat trip (see figure
15). Notice that the v/c = 0.4 image does not differ
much from the v = 0 view: the transverse Doppler ef-
fect is a truly relativistic order v2/c2 effect, manifesting
itself rather late during the boat trip. (And it is equiva-
lent to the time dilation, as we discussed in the exercise
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FIG. 15: The transverse Doppler effect: point of view
shots at different speeds, always looking straight up.

question).

Exercise 8

(a) The pedestrian’s velocity u′ in the quay frame fol-
lows immediately from the velocity addition formula:

u′ =
u+ v

1 + vu
c2
. (14)

(b) The Doppler formula applies for any periodic signal
that is transmitted with light speed (identifying λ = c/f
with f the signal frequency). By using the Doppler for-
mula to go from the pedestrian’s reference frame S0 to
the boat frame S′, we then immediately find

f ′ = f0

√
1− u′2

c2

1− u′

c cos θ′
, (15)

for the visually observed walking pace f ′. Solving f ′ = f0

we then find a critical angle θc

θc = arccos

(
c

u′
−
√

c2

u′2
− 1

)
< π/2 . (16)

For viewing directions θ′ < θc we would see the properly
visualized pedestrian in fast motion, while for θ′ > θc we
would see her in slow motion. Notice that in orthogonal
directions θ′ = π/2 we would see a walking pace f ′ slowed

down by a factor
√

1− u′2/c2. This is of course again

the transverse Doppler effect, a visual manifestation of
the time dilation, in this case showing us directly the
slowdown of the pedestrian’s eigentime with respect to
the boat frame time t.

Exercise 9

Similar to the previous exercise we can apply the
Doppler formula also on the photon flux ’frequency’
f = dN

dt :

dN ′

dt′
= D

dN

dt
. (17)

While for the surface element dΩ = dcos θdϕ, we have
from the inverted aberration formula (1) (replacing v →
−v, θ ↔ θ′):

dΩ = dcos θdϕ =
1− v2/c2

(1− v
c cos θ′)2

dcos θ′dϕ = D2dΩ′ .

(18)

Together this amounts to:

F ′ =
dN ′

dt′dΩ′
= D3 dN

dtdΩ
= D3F . (19)
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